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Abstract

Aviation research often relies on real-time, pilot-in-

the-loop flight simulation as a means to develop new

flight software, flight hardware, or pilot procedures.

Often these simulations become so complex that a sin-

gle processor is incapable of performing the necessary

computations within a fixed time-step. Threads are an

elegant means to distribute the computational work-

load when running on a symmetric multi-processor

machine. However, programming with threads often

requires operating system specific calls that reduce
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code portability and maintainability. While a multi-

threaded simulation allows a significant increase in the

simulation complexity, it also increases the workload

of a simulation operator by requiring that the operator

determine which models run on which thread. To ad-

dress these concerns an object-oriented design was

implemented in the NASA Langley Standard Real-

Time Simulation in C++ (LaSRS++) application

framework. The design provides a portable and main-

tainable means to use threads and also provides a

mechanism to automatically load balance the simula-

tion models.

i[]troductio[]

Aviation research often relies on real-time, pilot-in-

the-loop flight simulation as a means to develop new

flight software, flight hardware, or pilot procedures.

Concepts involving pilot interaction may require con-

current simulation of multiple, independent or loosely

coupled simulation models. A single processor may

not be sufficient to perform all of the necessary com-

putations of these complex flight simulations. A

means to alleviate this problem is to distribute the exe-

cution of independent simulation models among multi-

ple processors. Symmetric multi-processor machines
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allowtheindependentsimulationmodelstobedistrib-
utedamongeventloopsexecutinginparallel.Each
processormustbeabletocompletethecomputations
of themodelsassignedto it beforetheendof the
frame.Therefore,thenumberof simulationmodels
thatcanbeexecutedin a real-timemulti-processor
simulationis limitedbythenumberof processors
availableforreal-timeuseandbythecomputational
requirementsofthesimulationmodels.

Traditionally,multi-processorcomputersareusedby
startingseparateprocessesoneachprocessor.The
processesinteractwitheachotherviasharedmemory,
message-passing,orsomeotherformofinter-process
communication(IPC).Whilemulti-processimplemen-
tationsarefunctional,theyarenotoriouslycomplex,
difficulttomaintain,andlimittheuseof polymor-
phismincertainmodernobject-orientedprogramming
languages6. Multi-threadedsolutions,ontheother
hand,allowmultiplethreadsofexecutiontooperate
withinthesameaddressspace,eliminatingtheneedfor
IPCs,andeliminatingrestrictionsontheuseofpoly-
morphism.Threadsaresupportedbymostmodem
operatingsystemsandtherebyenablethedevelopment
of anelegant,platform-independentsolutionto the
problemofhowtosimulatemultiplevehiclesconcur-
rently.

Inpreviousworkt agenericdesignwaspresentedfor
theuseofthreadsintheLangleyStandardReal-Time
SimulationinC++(LaSRS++)frameworkonamulti-
processormachine.Whilefunctional,thedesignhad
severalshortcomings.First,thedesignwasimple-
mentedwithonlytheIRIXoperatingsystemfromSili-
conGraphicsIncorporatedinmind.Thisrestrictedthe
frameworkto onlybeingableto performmulti-
threadedoperationsontheIRIXplatform.Second,the
designunnecessarilytiedthethreadclassestotheIRIX
barrierandlockimplementations.Thiscouplingin-
creasesthedifficultyofimplementingthesefeatureson
differentplatformsandmaintainingtheframework
duringoperatingsystemupgrades.Clearlyamore
portableandmaintainabledesignisneeded.Thede-
signalsofailedtoprovideamechanismtodeterminea
feasiblesimulationmodeldistributionforthenumber
ofthreadsavailableduringareal-timesimulation.If
thedistributionselectionislefttothesimulationde-

veloperoruser,experienceshowsthateveninasmall-
scalesimulation,thisprocesscanbecostly,involving
educatedtrialandcrrorguesseswhenafeasibledistri-
butionmaynotevcnexist.A moreeffectivesolution
istoprovideautomaticschedulingofeachmodelfor
executionbyaparticularthread.

Toaddresstheseissues,theexistingdesignevolved
intoanewformthatisbothportableandmaintainable
andprovidesthemechanismsfor an automatic
schedulingalgorithmtodistributeasetof simulation
modelsacrossanumberofthreads,suchthattheload
isasuniformaspossible.Thenewdesignblendsthe
pre-existingthreaddesignwith the portability
abstractionusedin the LaSRS++application
frameworkforotheroperatingsystemservicesz.

While the application of these techniques in the

LaSRS++ framework is used for the special purpose of

flight simulation, the thread design and the automatic

scheduling algorithm are independent of the purpose of

the application. The design is a simple, user-friendly

solution for the execution of any sequential, real-time

application, running on a symmetric multi-processor

architecture, whose iterations can be resolved into two

or more independent sequences of computation.

Design Requirements

A preexisting design for multi-threaded, real-time

simulation I was extended to be platform independent

and incorporate automatic scheduling of models to

processors. The design had the following require-

ments for threads:

1. The design must support a variable number of

threads selected at run-time.

2. The design must be portable.

3. The design must provide a mechanism for thread

synchronization that does not jeopardize real-time

deadlines.

The scheduling algorithm had the following require-

ments:

1. The algorithm must allow a variable number of

simulation models to be processed on each thread.

2. The algorithm must automatically distribute inde-

pendent components of the workload amongst
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3.

available threads in such a way that real-time

deadlines are not jeopardized.

The algorithm must recognize if a feasible work-

load distribution does not exist.

dary storage access is significantly more costly in

terms of time than access to RAM, a suitable operating

system must provide the capability of locking the text

and data segments of a process into RAM.

A design that met the above requirements was imple-

mented in the LaSRS++ application framework. Ob-

ject-oriented programming techniques were used ex-

tensively to hide implementation details and maximize

code reuse. Well-known design patterns were used

where appropriate to promote simplicity and readabil-

ity of code, and encapsulate specific platform depend-

encies. The Bridge, Singleton, Factory and Mediator

patterns were used extensively 3. Using the Bridge

pattern, the implementation of an abstraction can be

changed without affecting clients. The Singleton pat-

tern ensures that there is a single, globally accessible

instance of a class. The Factory pattern is a specializa-

tion of the Singleton pattern that is used to encapsulate

all platform-dependent, conditional compilation. The

Mediator pattern is an encapsulation of object interac-

tion that promotes loose coupling by preventing ob-

jects from interacting directly.

Operating System Requirements for Real-Time

In order to build a multi-threaded, real-time simulation

for a particular symmetric multi-processor platform

running a general-purpose operating system, the oper-

ating system must provide certain capabilities. Tradi-

tional general-purpose time-sharing operating systems

schedule processes using a preemptive scheduling pol-

icy. This means that a process is forced to relinquish

control of the processor once its time slice has expired

so that other processes can get processor time. Since

hard real-time deadlines could be jeopardized by pre-

emption, an operating system that can support real-

time simulations must provide a mechanism for dis-

abling the preemptive scheduler on processors re-

served for real-time use.

Traditional time-sharing operating systems also place

the address space of processes in virtual memory. Vir-

tual memory allows the operating system to handle

loads that are more demanding in terms of space than

the machine's random access memory (RAM) will

allow. This is accomplished by swapping pages of

RAM in and out of secondary storage. Since secon-

Conventional operating systems for symmetric multi-

processors perform a task called load balancing. Load

balancing refers to the migration of processes amongst

the processors in such a way that the total system load

is distributed evenly across all available processors.

Since a real-time thread must never share processor

resources with other standard processes, the operating

system must provide a mechanism for forcing a thread

to run on a particular processor.

By default, the operating system is usually unaware of

multiple threads of execution within an address space,

leaving the scheduling of these threads as a task for the

process. This type of thread is commonly referred to

as a process-scope thread. However, for multi-

threaded real-time simulation applications, multiple

threads must be executing in parallel, which by defini-

tion is impossible for process-scope threads. The op-

erating system must provide a mechanism for creating

threads that are schedulable by the kernel rather than

from within the process. This type of thread is com-

monly called a system-scope or kernel thread.

If a general-purpose operating system has all of these

capabilities, it is suitable for multi-threaded, real-time

simulation. Each thread of such a simulation must be a

system-scope thread within a process that has been

locked into RAM, set to run on a dedicated processor,

with preemptive scheduling disabled.

Object-Oriented Approach to Threads

The C++ language does not provide any direct (object-

oriented) support for multi-threaded programming.

Two types of classes are required for developing ob-

ject-oriented, multi-threaded applications. These are

classes that represent threads, and classes representing

thread synchronization mechanisms. Thread synchro-

nization mechanisms include mutexes and barriers.

The mutex is a mechanism that ensures mutually ex-

clusive access to data or to non-thread-safe portions of

code (critical sections) in a multi-threaded process.

The barrier provides a collection point for some speci-
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Figure 1 Thread Design

fled number of threads of execution, and ensures that

none continue until the specified number of threads

have arrived.

Classes were developed for the LaSRS++ application

framework that provide a platform-independent inter-

face to thread, mutex, and barrier facilities. For each

of these services, the bridge and factory design pat-

terns were used. The bridge pattern prevents clients of

thread-related services from being affected by imple-

mentation details. This allows the implementation

portion of these classes to be changed without requir-

ing any modification to client components. The fac-

tory design pattern encapsulates all platform-specific

and build-option-determined conditional compilation.

This significantly improves the portability and main-

tainability of the LaSRS++ framework code.

Figure I shows a UML class diagram of the LaSRS++

thread implementation. When a client constructs a

new Thread, ThreadlmplFactory constructs the appro-

priate implementation (Threadlmpl). The specific type

of implementation is transparent to the client. The

LaSRS++ design for Barrier and Mutex is analogous

to the design for Thread.

To further increase the maintainability of the thread

implementation, the interfaces of the thread-related

abstraction classes were structured after the Portable

Operating System Interface (POSIX) standard, com-

monly called pthrcads. Pthreads are currently sup-

ported under several variants of the UNIX operating

system including Solaris, Digital UNIX, IRIX, and

Linux 4. As a result, the use of pthreads allows us to

build on any of these platforms using the

4
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PosixThreadlmpl as the concrete implementation por-

tion of the bridge. This source-code portability is

beneficial in an environment of potentially frequent

architecture changes 8,

A requirement of the multi-threaded simulation uncov-

ers a deficiency in the POSIX standard. There is noth-

ing in the POSIX application programming interface

(API) for specifying a particular processor on which a

thread must run. This eliminates the possibility of

constructing a completely platform-independent con-

crete thread implementation for multi-threaded, real-

time applications. A system-scope pthread may be

scheduled on a specific processor for its lifetime, but

the call to do this is platform-specific. However, due

to the use of the factory and bridge design patterns, the

work required to implement platform-specific pthreads

is minimal. The PosixThreadlmpl class has a virtual

method setRunOnO that takes the processor number as

an argument. To create a pthread that will run success-

fully on the IRIX operating system, a class named

IrixPosixThreadlmpl was created. This class inherits

from PosixThreadlmpl and overrides the setRunOnO

method with the IRIX-specific system call for running

a thread on a given processor. In this way, the reuse of

the existing thread classes is maximized, thus minimiz-

ing the work required for implementing platform-

specific thread models.

Real-Time Thread Synchronization

While each thread in a multi-threaded real-time simu-

lation is operating on independent tasks, there is often

some portion of the event loop that cannot be executed

before all threads have completed a certain portion of

their task. An example of this is computation of rela-

tive geometry between simulation models Regardless

of how relative geometry computations are distributed,

the state of all models must have been updated before

any of these computations can take place. A barrier

mechanism is used to implement this sort of rendez-

vous.

Operating systems supporting multi-threaded programs

also support barrier mechanisms. Programs that are

not subject to strict real-time deadlines should gener-

ally use the operating system supplied barrier facility.

However, if a thread blocks on a barrier system call, it

may not be guaranteed to resume execution within an

acceptable amount of time to meet a real-time dead-

line. The alternative is to implement a spin-loop bar-

rier mechanism. In this barrier, a primary thread waits

at the barrier for all remaining threads to arrive. As

each thread arrives, it locks itself and waits in a spin-

loop conditioned on the value of that lock. Once all

threads have arrived, the primary thread releases the

lock for each remaining thread, and all threads may

continue.

Schedulin_ Algorithm

Efficient thread synchronization alone does not

guarantee that real-time deadlines will be met. The

computational load must be balanced across the

processors such that no deadlines are missed during

real-time execution. Before any automatic scheduling

assignments can be made, an approximation for the

maximum execution time of each independent job

must be determined. Assuming no a priori knowledge

of the job execution times, the following algorithm is

used to accomplish this task in as efficient a manner as

possible.

1. Jobs are randomly distributed across all real-time

simulation threads.

2. Each thread performs any necessary initialization

for all jobs assigned to its processor.

3. Each thread performs its jobs a fixed number of

times, tracking the maximum execution time of

each. It is assumed that the observed maximum is

a good estimate.

Once this phase has been completed, the timing infor-

mation can be used as input to one of several load-

balancing algorithms that attempt to find a valid distri-

bution of jobs. The load-balancing problem that must

be solved can be stated as follows:

Let P= {p_, p2 .... pn} be the set ofn processors and

J = {JJ, J2.... j,,} be the set of m jobs with associated

compute times C = {el, c2.... c,,}. Let L = {6, 6....

l,} be the total compute time on each processor, and let

T be the period of a real-time iteration. Determine a

mapping f : J ---> P such that:

5
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Where lj =_ cj I f(J)=i.

These requirements ensure that the workload is bal-

anced as evenly across the processors as possible, and

that no processor is overloaded such that deadlines are

missed. This is under the assumption that it is possible

for the given workload to be executed by the processor

set.

While this problem is NP-complete 9, an algorithm was

developed that yields near-optimal solutions in a rea-

sonable amount of time. Jobs are sorted by non-

increasing execution time. Starting with the largest

job, each job is assigned to the processor that is cur-

rently supporting the smallest workload. If a job can-

not be placed, it is assumed that the current workload

cannot be supported in real-time by the given proces-

sor set.

The computational requirements of this algorithm do

not jeopardize real-time deadlines because the algo-

rithm is initially executed prior to running the simula-

tion, and may be repeated at non-critical points of exe-

cution after starting (e.g., in a RESET mode). Within

larger scale simulations where faster load-balancing

algorithms are desirable, any algorithm may be substi-

tuted. Much research has been done with various load-

balancing techniques, such that an effective algorithm

can be applied within any arena.

Application of these Techniques to LaSRS++

Both the platform-independent thread abstraction and

the load-balancing algorithm presented above were

incorporated into the LaSRS++ framework. The rela-

tionships between various objects that are central to

the framework are depicted in figure 2. The sequence

of execution, from construction of certain core objects

to synchronous real-time execution, is depicted in fig-

ure 3.
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After being launched, the LaSRS++ simulation process

locks the segments of its address space into RAM; sets

its priority to the highest level available on the system;

and isolates, restricts, and disables preemptive sched-

uling on each available processor. For each dedicated

processor, the process constructs one system-scope

thread and starts it on this processor. These threads

each begin execution in a function that constructs and

executes a FlightSim object. At construction time, the

7
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FlightSim object is given the processor number on

which the constructing thread is running.

In the LaSRS++ framework, the real-time simulation

event loop is defined by the FlightSim executeO

method. Construction and execution of multiple

FlightSim objects by separate Threads results in multi-

ple simulation event loops executing in parallel. The

event loop consists of several distinct phases, some of

which may not begin until all computations from the

previous phase are complete (i.e. updating states of

positional models must have been completed before

calculation of relative geometry between models can

begin). Each such phase begins with a call to SimCon-

trol::synchronizeO. This method is an implementation

of a spin-loop barrier, as previously discussed, that

will not return until it has been called by all simulation

threads. This ensures that all FlightSim objects are

executing the same portion of the event loop at the

same time.

While FlightSim objects represent the encapsulation of

the periodic sequence of events in LaSRS++, Universe

is the maintainer of the simulation model data. All

simulation model objects are derived from Position-

alModel, and are contained within the Universe single-

ton. Universe mediates between PositionalModels and

all other components of the simulation framework,

meaning that a PositionalModel may only be modified

through action taken by the Universe.

To manage the active models during execution, the

Universe has a member data structure that maps each

model to the processor on which it is to be executed.

The structure is a multimap container from the C++

Standard Template Library (STL) 5, The multimap

maintains a sorted list of key and value pairs. The pairs

stored in the multimap contained by Universe are the

processor identifiers and PositionalModel objects.

Use of the STL provides a portable and robust data

structure, which has been thoroughly tested and whose

interface is well defined.

Within the multimap, PositionalModels are found us-

ing the processor identifier as the search key. Corre-

spondingly, all of the Universe's methods that act on

PositionalModels take a processor number as an ar-

gument. When one of these methods is called, only the

PositionalModels associated with the specified proces-

sor are affected. This allows multiple FlightSim ob-

jects to cause the Universe to modify disjoint subsets

of PositionalModels in parallel.

Among Universe's methods are profileModels O,

doOperateO, and propagateModelsO. ProfileModelsO

is used by FlightSim to execute models in order to gain

an estimate of the maximum amount of compute time

that each will takc. This information is required to

complete the load-balancing operation. DoOperateO

is used by FlightSim to update the outputs (e.g., forces

and moments) of a model during synchronous real-

time. PropagateModelsO is used by FlightSim to inte-

grate a simulation object's state and to compute out-

puts from the new state that belong to the next frame.

After the simulation process has been constructed and

initialized, the workload is profiled and balanced

across the available processors. To do this, the Uni-

verse randomly associates an equal number of Posi-

tionalModels with each available real-time processor.

The simulation is initially in PROFILE mode. In this

mode, FlightSirn objects call the Universe's pro-

fileModels() method. Since there is a FlightSim object

for each real-time processor, this results in all models

getting profiled. The main simulation thread then calls

the Universe balanceLoadO method. Using the algo-

rithm discussed in the previous section, the Universe

modifies the mapping of PositionalModels to proces-

sors within its multimap such that the load is as evenly

distributed as possible. If a feasible workload distribu-

tion does not exist, the user is informed, and the simu-

lation will not be allowed to transition to the real-time

OPERATE mode.

After the simulation has transitioned into the synchro-

nous real-time OPERATE mode, the FlightSim objects

perform the following periodic sequence of steps:

I. SimControl: :synchronizeO

2. Universe: :doOperateO

3. SimControl: :svnchronize 0

4. Universe:.'propagateModels 0

5. SimControl: :synchronizeO

6. Universe: :relativeGeometry 0
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Experimental Results

The capabilities of the multi-threaded simulation and

the scheduling algorithm were tested with a mixed

workload of transport aircraft, fighters, and missiles.

The models and their associated maximum compute

times are presented in Table 1.

Model Type Cost (ms)

B757 4.35 ms

F/A-18E 6.59 ms

F-I 5A 0.99 ms

F-16A 0.87 ms

Launch Envelope Missile 0.01 ms

Table 1 Positional Models and Associated Costs

The LaSRS++ real-time simulation runs on an SGI

Onyx with eight processors, three of which are avail-

able for the parallel execution of simulation threads.

The simulation is run at a frame rate of 50 Hz, corre-

sponding to a 20 ms frame time. To demonstrate the

effectiveness of the use of multiple threads and the

load-balancing algorithm, a workload was created

comprised of three B757s, two F/A-18Es, 10 F-15As,

and 10 F-16As. Each fighter is equipped with four

launch envelope missiles. Note that without the use of

multiple threads, this workload could not be executed

within real-time constraints.

Figures 4 and 5 demonstrate the effectiveness of the

load-balancing algorithm on the given workload. Prior

to balancing, the number of models for each processor

is similar, but the workload on the first processor is

approaching the upper bound of 20 ms. A slight varia-

tion in the model computations or the system perform-

ance in this configuration could result in a frame over-

run - an unacceptable occurrence in a real-time

simulation. The load-balancing algorithm then

successfully schedules the models in a configuration

that ensures that the load on all processors is well

within the boundaries of the real-time deadlines.

Concluding Remarks

The design has allowed the framework to be compiled

and run on the SGI and the Sun platforms, and it will

be ported to the Linux and Win2000 platforms in the

near future. Moving the framework to a new platform

only requires the development of several implementa-

tion classes that can be unit tested before use with the

framework.

The abstractions found in the thread design make the

framework easy to maintain. Any modifications to the

operating system that might require changes to thread,

barrier or lock classes would require changes only to a

9
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platform specific implementation. The modifications

could then be verified using the unit test for the modi-

fied class and would not require extensive re-testing of

the framework itself.

The scheduling algorithm alleviates unnecessary bur-

den on the simulation operator by providing an effec-

tive solution to the load distribution problem.

Although the design presented in this paper was origi-

nally designed to support flight simulation at NASA

Langley Research Center, the design could be used in

any object-oriented framework to more effectively

utilize the capabilities of symmetric multi-processor

machines.
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